Introduction to EPA Stormwater Regulations

In 1977, Congress passed the Clean Water Act to preserve the environmental health of the nation’s waterways. Originally, the law called for the Environmental Protection Agency to regulate water pollution at the source. Later amendments regulated pollution from stormwater runoff so that nothing but rainwater enters the nation’s rivers, lakes, and estuaries.

EPA has issued two sets of stormwater regulations. Phase I set standards for municipal separate storm sewer systems (MS4s) serving populations of more than 100,000 construction sites larger than 5 acres, and 10 major industries.

Phase II runoff rules issued in 2000 extended coverage to MS4s in small towns and suburbs and building sites that disturb between 1 and 5 acres of land.

Phase II rules simplify compliance. They give operators the flexibility to choose among a variety of best management practices (BMPs) to control stormwater runoff pollutants.

Environmental Solutions

EPA’s Stormwater Phase II regulations are helping America keep our waterways clean. The Federal Signal Environmental Solutions Group manufactures sweeping and vacuuming equipment that help municipalities implement their Phase II stormwater goals:

Elgin Sweeper street sweepers remove contaminants before they can enter storm drains. Some sweepers can be equipped with a catch basin cleaning hose for added versatility.

Vector Manufacturing combination sewer cleaners and catch basin trucks clean sewer and storm drain lines, catch basins, vaults and trenches. Vector’s vacuum excavators expose underground utilities or provide precise excavation work without mounds of silt-producing raw earth.

Guzzler air movers and industrial vacuum trucks remove contaminants from stormwater retention ponds and industrial sites.

Contact Federal Signal Environmental Solutions Group today and we will show you why street sweeping, vacuum cleaning, and vacuum excavation are the best – and most cost-effective – management practices for your construction, post-construction, and preventive housekeeping programs.

EPA Clean Water Act Resources

For the EPA’s introduction to the Clean Water Act visit: http://www.epa.gov/watetrain/cwa/

For the EPA’s regional offices visit: http://www.epa.gov/epahome/regions.htm

For information on the EPA’s Stormwater Program visit: http://cfpub.epa.gov/mde/streams.cfm#Program id=6

For facts on the EPA’s Stormwater Phase II Rule visit: http://cfpub.epagov/mde/streams/Stormwater/Stormwater.cfm

For information on the Stormwater Publication visit: www.stormh20.com

For information from the Center for Watershed Protection visit: http://www.cwp.org/#sweeping

For information from the Center for Watershed Protection visit: http://www.pacificwr.com/

EPA Clean Water Act Resources

Elgin Sweeper Company is a leading manufacturer of street sweepers for municipal, contractor, airport and industrial sweeping. Elgin offers mechanical/broom, vacuum, regenerative air sweepers. Sweepers include the latest technologies such as PM-10 compliance, alternative fuel driven, and wastewater control. p.617.741.5370 www.elginsweeper.com

Vector Manufacturing is the leading manufacturer of truck mounted combination sewer cleaner and catch basin cleaners and jetties for sewer line maintenance, vacuum excavators for non-destructive digging and specialty products such as glycol recovery vehicles and surface cleaners. p.815.672.3171 www.vector.com

Guzzler Manufacturing is a world leader in vacuum solutions for heavy industrial applications. Guzzler products remove wet or dry material accumulation from remote or inaccessible areas and can clean up and recover and afford valuable raw material from solids and bulk powders to liquids, slurries and thick sludge. 815.672.3171 www.guzzler.com

Introduction to EPA Stormwater Regulations

In 1977, Congress passed the Clean Water Act to preserve the environmental health of the nation’s waterways. Originally, the law called for the Environmental Protection Agency to regulate water pollution at the source. Later amendments regulated pollution from stormwater runoff so that nothing but rainwater enters the nation’s rivers, lakes, and estuaries.

EPA has issued two sets of stormwater regulations. Phase I set standards for municipal separate storm sewer systems (MS4s) serving populations of more than 100,000 construction sites larger than 5 acres, and 10 major industries.

Phase II runoff rules issued in 2000 extended coverage to MS4s in small towns and suburbs and building sites that disturb between 1 and 5 acres of land.

Phase II rules simplify compliance. They give operators the flexibility to choose among a variety of best management practices (BMPs) to control stormwater runoff pollutants.

Environmental Solutions

EPA’s Stormwater Phase II regulations are helping America keep our waterways clean. The Federal Signal Environmental Solutions Group manufactures sweeping and vacuuming equipment that help municipalities implement their Phase II stormwater goals.

Elgin Sweeper street sweepers remove contaminants before they can enter storm drains. Some sweepers can be equipped with a catch basin cleaning hose for added versatility.

Vactor Manufacturing combination sewer cleaners and catch basin trucks clean sewer and storm drains, catch basins, vaults, and traps. Vactor’s vacuum excavators expose underground utilities or provide precise excavation work without mounds of silt-producing raw earth.

Guzzler air movers and industrial vacuum trucks remove contaminants from stormwater retention ponds and industrial sites.

Contact Federal Signal Environmental Solutions Group today and we will show you why street sweeping, vacuum cleaning, and vacuum excavation are the best – and most cost-effective – management practices for your construction, post-construction, and preventative housekeeping programs.

EPA Clean Water Act Resources

For the EPA’s introduction to the Clean Water Act visit: http://www.epa.gov/watetrain/cwa/

For the EPA’s regional offices visit: http://www.epa.gov/regions/regions.htm

For information on the EPA’s Stormwater Program visit: http://cbs.epa.gov/npdes/Stormwater/Program_id-6

For facts on the EPA’s Stormwater Phase II Rule visit: http://cbs.epa.gov/npdes/stormwater/swfinal.cfm

For information on the Stormwater Publication visit: www.stormh20.com

For information from the Center for Watershed Protection visit: http://www.cwp.org/

For information from the Pacific Water Resources Inc. visit: http://www.pacificwr.com/
Excavation usually takes place late in construction to connect buildings with local utilities. Contractors typically explore and expose utility nodes manually, which requires a lot of time and labor. Vacuum excavation equipment, such as Vactor® Manufacturing’s HXX Prodigy® and HXX HydroExcavator®, are specifically designed for this new construction.

Post-construction Runoff Controls
Phase II regulations require permanent structures to manage stormwater runoff after construction. These structures include catch basins, dry wells, infiltration trenches, ponds/vaults, and permeable pavement. Municipalities should ensure these structures have adequate capacity and are designed, sized, and maintained, and monitored. These structures are very effective.

Vacuum excavation uses high-pressure air or water to loosen soil and a powerful vacuum to suck it into a truck. They are much faster than shovels for cleaning before signing off on the project. Vactor makes several combination sewer cleaners that handle the job cost-effectively.

Vacuum excavation equipment, such as Vactor® Manufacturing’s HXX Prodigy® and HXX HydroExcavator®, are specifically designed for this new construction. Municipalities should ensure these structures have adequate capacity and are designed, sized, and maintained, and monitored. These structures are very effective.

Vacuum excavation uses high-pressure air or water to loosen soil and a powerful vacuum to suck it into a truck. They are much faster than shovels for cleaning before signing off on the project. Vactor makes several combination sewer cleaners that handle the job cost-effectively.

Vacuum excavation uses high-pressure air or water to loosen soil and a powerful vacuum to suck it into a truck. They are much faster than shovels for cleaning before signing off on the project. Vactor makes several combination sewer cleaners that handle the job cost-effectively.

Vacuum excavation uses high-pressure air or water to loosen soil and a powerful vacuum to suck it into a truck. They are much faster than shovels for cleaning before signing off on the project. Vactor makes several combination sewer cleaners that handle the job cost-effectively.

Vacuum excavation uses high-pressure air or water to loosen soil and a powerful vacuum to suck it into a truck. They are much faster than shovels for cleaning before signing off on the project. Vactor makes several combination sewer cleaners that handle the job cost-effectively.

Vacuum excavation uses high-pressure air or water to loosen soil and a powerful vacuum to suck it into a truck. They are much faster than shovels for cleaning before signing off on the project. Vactor makes several combination sewer cleaners that handle the job cost-effectively.

Vacuum excavation uses high-pressure air or water to loosen soil and a powerful vacuum to suck it into a truck. They are much faster than shovels for cleaning before signing off on the project. Vactor makes several combination sewer cleaners that handle the job cost-effectively.

Vacuum excavation uses high-pressure air or water to loosen soil and a powerful vacuum to suck it into a truck. They are much faster than shovels for cleaning before signing off on the project. Vactor makes several combination sewer cleaners that handle the job cost-effectively.

Vacuum excavation uses high-pressure air or water to loosen soil and a powerful vacuum to suck it into a truck. They are much faster than shovels for cleaning before signing off on the project. Vactor makes several combination sewer cleaners that handle the job cost-effectively.

Vacuum excavation uses high-pressure air or water to loosen soil and a powerful vacuum to suck it into a truck. They are much faster than shovels for cleaning before signing off on the project. Vactor makes several combination sewer cleaners that handle the job cost-effectively.

Vacuum excavation uses high-pressure air or water to loosen soil and a powerful vacuum to suck it into a truck. They are much faster than shovels for cleaning before signing off on the project. Vactor makes several combination sewer cleaners that handle the job cost-effectively.

Vacuum excavation uses high-pressure air or water to loosen soil and a powerful vacuum to suck it into a truck. They are much faster than shovels for cleaning before signing off on the project. Vactor makes several combination sewer cleaners that handle the job cost-effectively.

Vacuum excavation uses high-pressure air or water to loosen soil and a powerful vacuum to suck it into a truck. They are much faster than shovels for cleaning before signing off on the project. Vactor makes several combination sewer cleaners that handle the job cost-effectively.

Vacuum excavation uses high-pressure air or water to loosen soil and a powerful vacuum to suck it into a truck. They are much faster than shovels for cleaning before signing off on the project. Vactor makes several combination sewer cleaners that handle the job cost-effectively.

Vacuum excavation uses high-pressure air or water to loosen soil and a powerful vacuum to suck it into a truck. They are much faster than shovels for cleaning before signing off on the project. Vactor makes several combination sewer cleaners that handle the job cost-effectively.

Vacuum excavation uses high-pressure air or water to loosen soil and a powerful vacuum to suck it into a truck. They are much faster than shovels for cleaning before signing off on the project. Vactor makes several combination sewer cleaners that handle the job cost-effectively.

Vacuum excavation uses high-pressure air or water to loosen soil and a powerful vacuum to suck it into a truck. They are much faster than shovels for cleaning before signing off on the project. Vactor makes several combination sewer cleaners that handle the job cost-effectively.

Vacuum excavation uses high-pressure air or water to loosen soil and a powerful vacuum to suck it into a truck. They are much faster than shovels for cleaning before signing off on the project. Vactor makes several combination sewer cleaners that handle the job cost-effectively.

Vacuum excavation uses high-pressure air or water to loosen soil and a powerful vacuum to suck it into a truck. They are much faster than shovels for cleaning before signing off on the project. Vactor makes several combination sewer cleaners that handle the job cost-effectively.

Vacuum excavation uses high-pressure air or water to loosen soil and a powerful vacuum to suck it into a truck. They are much faster than shovels for cleaning before signing off on the project. Vactor makes several combination sewer cleaners that handle the job cost-effectively.

Vacuum excavation uses high-pressure air or water to loosen soil and a powerful vacuum to suck it into a truck. They are much faster than shovels for cleaning before signing off on the project. Vactor makes several combination sewer cleaners that handle the job cost-effectively.

Vacuum excavation uses high-pressure air or water to loosen soil and a powerful vacuum to suck it into a truck. They are much faster than shovels for cleaning before signing off on the project. Vactor makes several combination sewer cleaners that handle the job cost-effectively.

Vacuum excavation uses high-pressure air or water to loosen soil and a powerful vacuum to suck it into a truck. They are much faster than shovels for cleaning before signing off on the project. Vactor makes several combination sewer cleaners that handle the job cost-effectively.

Vacuum excavation uses high-pressure air or water to loosen soil and a powerful vacuum to suck it into a truck. They are much faster than shovels for cleaning before signing off on the project. Vactor makes several combination sewer cleaners that handle the job cost-effectively.

Vacuum excavation uses high-pressure air or water to loosen soil and a powerful vacuum to suck it into a truck. They are much faster than shovels for cleaning before signing off on the project. Vactor makes several combination sewer cleaners that handle the job cost-effectively.

Vacuum excavation uses high-pressure air or water to loosen soil and a powerful vacuum to suck it into a truck. They are much faster than shovels for cleaning before signing off on the project. Vactor makes several combination sewer cleaners that handle the job cost-effectively.

Vacuum excavation uses high-pressure air or water to loosen soil and a powerful vacuum to suck it into a truck. They are much faster than shovels for cleaning before signing off on the project. Vactor makes several combination sewer cleaners that handle the job cost-effectively.

Vacuum excavation uses high-pressure air or water to loosen soil and a powerful vacuum to suck it into a truck. They are much faster than shovels for cleaning before signing off on the project. Vactor makes several combination sewer cleaners that handle the job cost-effectively.

Vacuum excavation uses high-pressure air or water to loosen soil and a powerful vacuum to suck it into a truck. They are much faster than shovels for cleaning before signing off on the project. Vactor makes several combination sewer cleaners that handle the job cost-effectively.

Vacuum excavation uses high-pressure air or water to loosen soil and a powerful vacuum to suck it into a truck. They are much faster than shovels for cleaning before signing off on the project. Vactor makes several combination sewer cleaners that handle the job cost-effectively.

Vacuum excavation uses high-pressure air or water to loosen soil and a powerful vacuum to suck it into a truck. They are much faster than shovels for cleaning before signing off on the project. Vactor makes several combination sewer cleaners that handle the job cost-effectively.

Vacuum excavation uses high-pressure air or water to loosen soil and a powerful vacuum to suck it into a truck. They are much faster than shovels for cleaning before signing off on the project. Vactor makes several combination sewer cleaners that handle the job cost-effectively.

Vacuum excavation uses high-pressure air or water to loosen soil and a powerful vacuum to suck it into a truck. They are much faster than shovels for cleaning before signing off on the project. Vactor makes several combination sewer cleaners that handle the job cost-effectively.

Vacuum excavation uses high-pressure air or water to loosen soil and a powerful vacuum to suck it into a truck. They are much faster than shovels for cleaning before signing off on the project. Vactor makes several combination sewer cleaners that handle the job cost-effectively.

Vacuum excavation uses high-pressure air or water to loosen soil and a powerful vacuum to suck it into a truck. They are much faster than shovels for cleaning before signing off on the project. Vactor makes several combination sewer cleaners that handle the job cost-effectively.

Vacuum excavation uses high-pressure air or water to loosen soil and a powerful vacuum to suck it into a truck. They are much faster than shovels for cleaning before signing off on the project. Vactor makes several combination sewer cleaners that handle the job cost-effectively.

Vacuum excavation uses high-pressure air or water to loosen soil and a powerful vacuum to suck it into a truck. They are much faster than shovels for cleaning before signing off on the project. Vactor makes several combination sewer cleaners that handle the job cost-effectively.

Vacuum excavation uses high-pressure air or water to loosen soil and a powerful vacuum to suck it into a truck. They are much faster than shovels for cleaning before signing off on the project. Vactor makes several combination sewer cleaners that handle the job cost-effectively.

Vacuum excavation uses high-pressure air or water to loosen soil and a powerful vacuum to suck it into a truck. They are much faster than shovels for cleaning before signing off on the project. Vactor makes several combination sewer cleaners that handle the job cost-effectively.

Vacuum excavation uses high-pressure air or water to loosen soil and a powerful vacuum to suck it into a truck. They are much faster than shovels for cleaning before signing off on the project. Vactor makes several combination sewer cleaners that handle the job cost-effectively.

Vacuum excavation uses high-pressure air or water to loosen soil and a powerful vacuum to suck it into a truck. They are much faster than shovels for cleaning before signing off on the project. Vactor makes several combination sewer cleaners that handle the job cost-effectively.
Locating utility nodes, and quickly dig precise trenches. With air excavation, after completing the connection, the trench can be backfilled with the loose debris. This type of sweeper uses pressurized air to lift debris into a suction hose and then into the hopper. The unit should be designed and manufactured to lift and follow a gutter broom as closely as possible without developing a vacuum. It should also be designed with the ability to lift a large range of debris. Elgin’s pure vacuum sweepers all come with a standard feature that makes them ideal for stormwater pollution control. The vacuum nozzle extends outside the tire track and follows directly behind the gutter broom. The nozzle immediately vacuums up any debris dislodged by the gutter broom. This system has traps and vaults to contain silt. Without regular cleaning, flooding releases those concentrated pollutants. Elgin, Vactor, and Guzzler all manufacture a broad range of cleaning, silt and construction debris usually plug the system by the end of the project. Municipalities should specify a complete system vacuuming and reviewing stormwater management programs.

Construction Runoff Controls

- Municipalities and contractors must file Phase II stormwater permits and implement stormwater discharge management controls known as best management practices (BMPs). Stormwater Phase II describes critical BMPs.
- EPA recommendations to minimize stormwater pollution.
- Reducing runoff by letting water percolate through the soil rather than flow into storm drains or streets.
- Storm drain cleaning. Municipalities should specify a complete system vacuuming and reviewing stormwater management programs. (EPA will also fine communities that allow pollutants to accumulate.)
- For low-density neighborhoods, cities, townships, and counties, municipalities should consider specifying a complete system vacuuming and reviewing stormwater management programs.
- Storm drain cleaning.
- Since the early 1980s, researchers have tested the impact of sweepers on stormwater pollution. They sought to evaluate sweepers' efficiency and to develop a cost-effective, EPA approved sweeping solution for stormwater control.
- Stormwater Runoff Models. Since the early 1980s, researchers have tested the impact of sweepers on stormwater pollution. They sought to evaluate sweepers' efficiency and to develop a cost-effective, EPA approved sweeping solution for stormwater control.
- Stormwater pollution prevention and control programs are effective because they can:
 - Reduce sediment and nutrient loading to stormwater.
 - Reduce the frequency and intensity of flooding and erosion.
 - Improve water quality in stormwater systems.
- Municipalities should require developers to design and install stormwater control structures as part of their construction projects.
- Municipalities should specify a complete system vacuuming and reviewing stormwater management programs.
- For low-density neighborhoods, cities, townships, and counties, municipalities should consider specifying a complete system vacuuming and reviewing stormwater management programs. (EPA will also fine communities that allow pollutants to accumulate.)
- Storm drain cleaning.
- Since the early 1980s, researchers have tested the impact of sweepers on stormwater pollution. They sought to evaluate sweepers' efficiency and to develop a cost-effective, EPA approved sweeping solution for stormwater control.
- Stormwater Runoff Models. Since the early 1980s, researchers have tested the impact of sweepers on stormwater pollution. They sought to evaluate sweepers' efficiency and to develop a cost-effective, EPA approved sweeping solution for stormwater control.
Excavation usually takes place late in construction to connect buildings with local utilities. Contractors typically explore and expose utility nodes manually, so digging trenches is not possible. Many contractors use air excavation, which uses a high velocity air stream to nondestructively excavate or to safely unearth sewer, water, gas, power, telephone, and cable utility lines. Non-destructive excavation such as slot trenching, potholing, water valve box repair, and locating utility lines is often easier and cheaper because it doesn’t require trenching. It is also less disruptive to the environment than other excavation methods.

Post-Construction Runoff Controls
Phase II regulations require permanent structures to manage runoff after construction. Runoff control structures are often required at this time. Runoff control structures at construction sites are usually designed to retain water on site to protect local waterways. They include rain gardens, tree plantings, gabions, and permeable pavements.

Stormwater runoff, which can carry pollutants, is a real concern at construction sites. The EPA requires contractors to prevent runoff from larger excavations. Many local authorities enforce similar rules for all new construction. Builders and local authorities should develop standard operating procedures, target neighborhoods, and models.

Construction Runoff Control
Runoff from a typical storm on construction sites can result in stream and lake discharges, damage aquatic habitats and diminish fish populations. EPA requires contractors to prevent runoff from larger excavations. Many local authorities enforce similar rules for all new construction. Builders and local authorities should develop standard operating procedures, target neighborhoods, and models.

Construction Runoff Control
Runoff from a typical storm on construction sites can result in stream and lake discharges, damage aquatic habitats and diminish fish populations. EPA requires contractors to prevent runoff from larger excavations. Many local authorities enforce similar rules for all new construction. Builders and local authorities should develop standard operating procedures, target neighborhoods, and models.

Construction Runoff Control
Runoff from a typical storm on construction sites can result in stream and lake discharges, damage aquatic habitats and diminish fish populations. EPA requires contractors to prevent runoff from larger excavations. Many local authorities enforce similar rules for all new construction. Builders and local authorities should develop standard operating procedures, target neighborhoods, and models.

Construction Runoff Control
Runoff from a typical storm on construction sites can result in stream and lake discharges, damage aquatic habitats and diminish fish populations. EPA requires contractors to prevent runoff from larger excavations. Many local authorities enforce similar rules for all new construction. Builders and local authorities should develop standard operating procedures, target neighborhoods, and models.

Construction Runoff Control
Runoff from a typical storm on construction sites can result in stream and lake discharges, damage aquatic habitats and diminish fish populations. EPA requires contractors to prevent runoff from larger excavations. Many local authorities enforce similar rules for all new construction. Builders and local authorities should develop standard operating procedures, target neighborhoods, and models.

Construction Runoff Control
Runoff from a typical storm on construction sites can result in stream and lake discharges, damage aquatic habitats and diminish fish populations. EPA requires contractors to prevent runoff from larger excavations. Many local authorities enforce similar rules for all new construction. Builders and local authorities should develop standard operating procedures, target neighborhoods, and models.

Construction Runoff Control
Runoff from a typical storm on construction sites can result in stream and lake discharges, damage aquatic habitats and diminish fish populations. EPA requires contractors to prevent runoff from larger excavations. Many local authorities enforce similar rules for all new construction. Builders and local authorities should develop standard operating procedures, target neighborhoods, and models.

Construction Runoff Control
Runoff from a typical storm on construction sites can result in stream and lake discharges, damage aquatic habitats and diminish fish populations. EPA requires contractors to prevent runoff from larger excavations. Many local authorities enforce similar rules for all new construction. Builders and local authorities should develop standard operating procedures, target neighborhoods, and models.

Construction Runoff Control
Runoff from a typical storm on construction sites can result in stream and lake discharges, damage aquatic habitats and diminish fish populations. EPA requires contractors to prevent runoff from larger excavations. Many local authorities enforce similar rules for all new construction. Builders and local authorities should develop standard operating procedures, target neighborhoods, and models.

Construction Runoff Control
Runoff from a typical storm on construction sites can result in stream and lake discharges, damage aquatic habitats and diminish fish populations. EPA requires contractors to prevent runoff from larger excavations. Many local authorities enforce similar rules for all new construction. Builders and local authorities should develop standard operating procedures, target neighborhoods, and models.
Introduction to EPA Stormwater Regulations

In 1977, Congress passed the Clean Water Act to preserve the environmental health of the nation’s waterways. Originally, the law called for the Environmental Protection Agency to regulate water pollution at the source. Later amendments regulated pollution from stormwater runoff so that nothing but rainwater enters the nation’s rivers, lakes, and estuaries.

EPA has issued two sets of stormwater regulations. Phase I set standards for municipal separate storm sewer systems (MS4s) serving populations of more than 100,000 and construction sites larger than 5 acres, and 10 major industries.

Phase II runoff rules issued in 2000 extended coverage to MS4s in small towns and suburbs and building sites that disturb between 1 and 5 acres of land.

Phase II rules simplify compliance. They give operators the flexibility to choose among a variety of best management practices (BMPs) to control stormwater runoff pollutants.

Environmental Solutions

EPA’s Stormwater Phase II regulations are helping America keep our waterways clean. The Federal Signal Environmental Solutions Group manufactures sweeping and vacuuming equipment that help municipalities implement their Phase II stormwater goals.

Elgin Sweeper street sweepers remove contaminants before they can enter storm drains. Some sweepers can be equipped with a catch basin cleaning hose for added versatility.

Vactor Manufacturing combination sewer cleaners and catch basin trucks clean sewer and storm drain lines, catch basins, vaults and traps. Vactor’s vacuum excavators expose underground utilities or provide precise excavation work without rounds of spirited raw earth.

Guzzler air moved and industrial vacuum trucks remove contaminants from stormwater retention ponds and industrial sites.

Contact Federal Signal Environmental Solutions Group today and we will show you why street sweeping, vacuum cleaning, and vacuum excavation are the best – and most cost-effective – management practices for your construction, post-construction, and prevention/housekeeping programs.

For the EPA’s introduction to the Clean Water Act visit: http://www.epa.gov/waterrain/cwa/

For the EPA’s regional offices visit: http://www.epa.gov/epahome/regions.htm

For information on the EPA’s Stormwater Program visit: http://cfpub.epa.gov/stormwater/permits.cfm#Programs

For facts on the EPA’s Stormwater Phase II Rule visit: http://cfpub.epa.gov/npdes/swfinal.cfm

For information on the Stormwater Publication visit: www.stormh20.com

For information from the Center for Watershed Protection visit: http://www.cwp.org/#sweeping

For information from the Pacific Water Resources Inc. visit: http://www.pacificwr.com/

Elgin Sweeper Company is a leading manufacturer of street sweepers for municipal, contractor, airport and industrial sweeping. Elgin offers mechanical/broom, vacuum, regenerative air sweepers. Sweepers include the latest technologies such as PM-10 compliance, alternative fuel driven, and waterless dust control. p.847.741.5370 www.elginsweeper.com

Vactor Manufacturing is the leading manufacturer of truck mounted combination sewer and catch basin cleaners and jetters for sewer line maintenance, vacuum excavators for non-destructive digging and specialty products such as glycol recovery vehicles and septic tankers. p.815.672.3171 www.vactor.com

Guzzler Manufacturing is a world leader in vacuum solutions for heavy industrial applications. Guzzler products remove wet or dry material accumulation from remote or inaccessible areas and can clean-up and recover and afford valuable raw material from solids and bulk powders to liquids, sludges and thick slurries. 815.672.3171 www.guzzler.com

©2008 Elgin Sweeper Co. Subsidiary of Federal Signal Corp. Effluxes 11/08 FAX 0705186-B Printed in USA

EPA Clean Water Act Resources